Monday, November 26, 2012

HVAC System Design- Formulae

I have been approached by lot of people to teach them system design for the HVAC&R product development and I thought it fit for them to start from basics as without  solid foundation there can be no building.So I thought of compiling the basic formulae first and then go for the system design aspects.It has taken me considerable time to compile these formulae.
I would like to thank Ms. Ashima Saxena for helping me in editing the list of the compilation.


Thermodynamic Design Formulae
Sr. No. EQUATION FORMULAE
1 F = m a Newton's law of motion
2 P = F / A Pressure
3 ρ = m / V Density
4 W = F d Work
5 PE = m g H Potential energy
6 KE = ½ m V2
Kinetic energy
7 Q = m Cp( t2 - t1 )
Sensible heat
8 Q = m ( h2 - h1 )
Total heat
9 W - Q = dE 1st law of thermodynamics
10
Cpa = 1.005 kJ/kgK
Heat capacity of dry air
11
Cpw = 4.193 kJ/kgK
Heat capacity of water
12
Cpv = 1.884 kJ/kgK
Heat capacity of water vapor
Heat Transfer Formulae
13 Q = - k A dt/dx Conduction
14 Q = hc A ( ts - tf )
Convection
15 Q=σ A Fε FA (t1-t2) Radiation
16 Re = ρ V Dh / µ
Reynolds number
17 Pr = µ Cp / k
Prandtl number
18 Nu = hc D / k
Nusselt number
19 Nu = 0.023 Re0.8 Pr0.4
Dittus-Boelter
Moist Air Phase Formulae
20 P = Pa + Pv
Dalton's Law of partial pressure
21 Pv = R T Perfect gas law
22 Ra = 0.287 kJ/kgK
Gas constant of dry air
23 Rv = 0.4615 kJ/kgK
Gas constant of water vapor
24 W = 0.622 Pv / (P - Pv)
Humidity
25 Pv = P / [1+0.622/W]
Vapor pressure from humidity
26 r = (1+W) / v True density of moist air
27 Ps = 0.6105 exp [ 17.27 t / (237.3+t) ]
Magnus saturation pressure
28 t = 237.3 / [17.27 / Ψ - 1]
where Ψ = ln (Ps / 0.6105)
Dew point temperature using the Magnus equation
29 f = Pv / Ps
Relative humidity
30 Pv = Psw - 1.8( P- Psw )( db - wb )/( 2800 - 1.3 wb )
Carrier vapor pressure
31 H = 1.005 db + W [ 2500.6 + 1.85 db - 0.023 wb] Enthalpy
32 hfg = 2501.9 - 2.4189 t
Latent heat of water vapor
Air Psychometric Formulae
33 ma = ρ Qa
Mass flow of dry air
34 Qs = ma Cpm ( t2 - t1 )
Sensible duty
35 Cpm = 1.023 kJ/kgK
at typical air-conditioning conditions
36 Qt = ma (h2 - h1 )
Total duty
37 SHR = Qs / Qt
Sensible heat ratio
38 b = ( db0 - adp ) / ( dbi - adp )
Bypass factor
39 Qs = h A (db - wb)
Sensible heat at wet wick
40 Ql = hd A (Ws,w - W) hfg,w
Latent heat at wet wick
41 hd = hc / Cpm
Mass transfer coefficient
Room Heat Formulae
42 Q = Uo Ao ( to - ti )
Heat conduction through a wall
43 r = ro + Σ t/K + ri
Wall resistance
44 Qsg = SHGF SC  A  CLF
Solar heat gain
45 Q = U A CLTD Cooling load temperature difference method
Cold Room Formulae
46 Qpulldown = m C dT
Pull down load
47 Qlatent = m ∆W λ
Latent load
48 Qrespiration = m R
Heat of respiration
Solar Angle Formulae
49 d = 23.45 sin ( 360 (284+n) / 365) Solar Declination
50 LST = CT + (Lstd - Lloc)/15 + E + DT
Local Solar Time
51 E = 0.165 sin 2B - 0.126 c os B - 0.025 sin B Equation of Time
52 B = 360 (n- 81) / 364 Parameter in E
53 h = 15 (LST - 12) Hour angle
54 sin β = cos l  c osh  cos d + sin l  sin d Altitude angle
55 cos φ = (cos d  sin l  cos h - sin d  cos l) / cos β Solar Azimuth
56 cos θ = cos β  cos λ  sin Σ + sin β  cos Σ Angle to surface normal
Solar Radiation Formulae
57 IDN = A e -B / sin β
Direct Normal Solar Flux
58 IdH = C IDN
Diffuse Horizontal Solar Flux
59 ID = IDN cos θ
Direct Solar Flux on Surface
Coil Calculation Formulae
60 dQ = hd dA ( ha - hi )
Heat flow on the c oil air side
61 dQ = hr dAi ( ti - tr )
Heat flow on the c oil fluid side
62 dQs = hc dA ( ta - ti )
Air sensible heat
63 Q = U A lmtd Duty from UA LMTD method
64 Lmtd = (dti - dto) / Ln( dti / dto )
Log mean temperature difference
65 Q = e Qmax
Effectiveness method
66 e = (1 - exp(- Ntu (1- Cr)) / (1 - Cr exp(- Ntu (1-Cr))
Counter-flow effectiveness
67 Cr = Cmin / Cmax
Capacity ratio
68 Ntu = U A / Cmin
Number of transfer units
Steam Formulae
69 λ = 2164 kJ/kgK Latent heat of vaporization at 2 bar gauge pressure
70 λ = 333.6 kJ/kg Latent heat of freezing
Fluid Flow in Pipes Formulae
71 dPfriction = ½ ρ ƒ L V2 / Dh
D'Arcy Weisbach friction equation
72 1/√ƒ = -2 Log [ ε / (3.7 Dh) + 2.51 / (Re √ƒ) ]
Colebrook friction factor
73 Dh = 4 A / P
Hydraulic diameter
Duct Design Calculation Formulae
74 P + ½ ρ V2 + ρ g H = constant
Bernoulli equation
75 P1 + ½ ρ V2 + r g H1 = P1 + ½ ρ V2 + ρ g H1 + Ploss
Modified Bernoulli
76 dP = ½ ρ Vd2 [ 0.4 ( 1 - Vd/Vu)2 ]
Branch straight through dp
77 Def = 1.3 (ab)0.625 / (a+b)0.25
Effective diameter of rectangular duct
78 dP = ½ ρ V2 [ (A1/A2)2 - 1 ]
dP for ideal flow through a nozzle
79 dP = ½ ρ V2 [ 1 - (A1/A2) ]2
dP for sudden enlargement
81 Re ≈ 67 V Dh
standard air with V (m/s) and Dh (mm)
Fan Laws
82 Law 1 ρ = const Q ~ ω SP  ~  ω2
Pw ~  ω3
83 Law 2 ω = c onst Q = const SP  ~  ρ Pw ~   ρ
84 Law 3 ω  ~  1/√ρ Q  ~  1/√ρ SP = const Pw ~  1/√ρ

Psychrometric ChartReynolds Number-FlowsDuct Design Chart